NONLINEAR NUMERICAL MODELLING OF BASALT REBAR REINFORCED CONCRETE STRUCTURES
Last modified: 01.06.2017
Abstract
Keywords
References
[1] Atutis M., Valivonis J., Atutis E. Experimental study of concrete beams prestressed with basalt fiber reinforced polymers. Part I: flexural behavior and serviceability, Composite Structures, 2017, doi: http://dx.doi.org/10.1016/j.compstruct.2017.01.081
[2] Atutis E., Atutis M., Budvytis M., Valivonis J. Serviceability and Shear Response of RC Beams Prestressed with a Various Types of FRP Bars, Procedia Engineering, 172, 2017, pp 60-67.
[3] Pawłowski D., Szumigała M. Flexural Behaviour of Full-scale Basalt FRP RC Beams – Experimental and Numerical Studies, Procedia Engineering, 108, 2015, pp. 518-525.
[4] Mahroug M.E.M., Ashour A.F., Lam D. Experimental response and code modelling of continuous concrete slabs reinforced with BFRP bars, Composite Structures, 107, 2014, pp. 664-674.
[5] He W., Wu T.F., Xu Y., Fu T.T. A thermodynamically consistent nonlocal damage model for concrete materials with unilateral effects, Computer Methods in Applied Mechanics and Engineering, 297, 2015, pp. 371-391.
[6] Richard B., Ragueneau F., Cremona C., Adelaide L. Isotropic continuum damage mechanics for concrete under cyclic loading: Stiffness recovery, inelastic strains and frictional sliding, Engineering Fracture Mechanics, 77(8), 2010, pp. 1203-1223.
[7] Roth S.N., Léger P., Soulaïmani A. A combined XFEM–damage mechanics approach for concrete crack propagation, Computer Methods in Applied Mechanics and Engineering, 283, 2015, pp. 923-955.
[8] Kurumatani M., Terada K., Kato J., Kyoya T., Kashiyama K. An isotropic damage model based on fracture mechanics for concrete, Engineering Fracture Mechanics, 155, 2016, pp. 49-66.
[9] Jirásek M., Patzák B. Consistent tangent stiffness for nonlocal damage models, Computers & Structures, 80(14–15), 2002, pp. 1279-1293.
[10] Ren M., Cong J., Wang B., Guo X. Extended multiscale finite element method for small-deflection analysis of thin composite plates with aperiodic microstructure characteristics, Composite Structures, 160, 2017, pp. 422-434.
[11] Temizer İ., Wu T., Wriggers P. On the optimality of the window method in computational homogenization, International Journal of Engineering Science, 64, 2013, pp. 66-73.
[12] Liu H., Zhang H.W. A p-adaptive multi-node extended multiscale finite element method for 2D elastostatic analysis of heterogeneous materials, Computational Materials Science, 73, 2013, pp. 79-92.
[13] Liu H., Lv J. An equivalent continuum multiscale formulation for 2D geometrical nonlinear analysis of lattice truss structure, Composite Structures, 160, 2017, pp. 335-348.