EFFECT OF HEAT TREATMENT ON ELECTRICAL AND MECHANICAL PROPERTIES OF THE SOLID SAPROPEL

Andris Martinovs, Rasma Tretjakova, Rene Castro, Vladimir Solovyev, Josef Timmerberg, Alexander Cvetkov, Sergey Gango, Angelika Borkenstein, Paul Beckmann, Helmut Schütte, Nikolai Puchkov, Sergey Trifonov


##manager.scheduler.building##: Atbrivosanas aleja 115, k-4 (Faculty of Engineering)
##manager.scheduler.room##: Room 013
Last modified: 01.06.2017

Abstract

In this work changes of electrical and mechanical properties (hardness) of the solid sapropel after its heat treatment were researched. Changes of real and imaginary parts of dielectric permittivity, dielectric losses and specific electrical resistance depending on electrical field frequency in the range 0.01Hz- 1MHz were observed.  Temperature dependences of AC (at 1 kHz) and DC electrical conductivity were studied. Chemical sample composition, IR spectra and structure of the solid sapropel were investigated. Heat treatment has a noticeable effect on the electrical characteristics of solid sapropel due to the strong influence of water on the charge transfer in this complex material. Charge transfer occurs predominantly due to ion migration and demonstrates strong dependence upon hydration - dehydration processes. After the heat treatment of the solid sapropel at the temperature of 1000C its hardness doesn’t change. If the sample of the solid sapropel is subjected to 20 min heat treatment at the temperature of 1500C, its hardness decreases by 5.4%, the number of C=C bonds decreases by 6.3±0.1%, the number of C=N bonds decreases by 2.2±0.1%, the number of C-C bonds decreases by 1,7±0.1%, the number of C-H bonds increases by 18.5±0.3%. It shows that in the temperature range 100-1500C destructive processes of the solid sapropel start, although visually (with optical microscope and with SEM) changes of structure are impossible to observe yet.


Keywords


solid sapropel; dielectric permittivity; specific electrical resistance; hardness; IR spectra; chemical composition

References


[1]     Поплавко Ю.М., Переверзева Л.П., Раевский И.П. Физика активных диэлектриков (Physics of active dielectrics). Ростов н/Д: Изд-во ЮФУ, 2009. 480 с.

[2]     Cole K.S., Cole R.H. Dispersion and absorbtion in dielectrics// J. Chem. Phys. 1941. V. 9. P. 341-351.

[3]     Богородицкий Н.П., Волокобинский Ю.М., Воробьев А.А., Тареев Б.М. Теория диэлектриков (Theory of dielectrics). М.-Л.: Энергия, 1965. 344 с.

[4]     Богатин А.С. Релаксационная поляризация в диэлектриках с большой сквозной электропроводностью (Relaxation polarization in dielectrics with large through conductivity). Автореферат дисс. на соискание ученой степени доктора физ.-мат. наук. Ростов-на-Дону, 2011. 42 с.

[5]     Jonscher A.K. Universal relaxation law. London: Chelsea Dielectric Press, 1996. 415 p.

[6]     Martinovs A., Timmerberg J., Tretjakova R., Beckmann P., Popa V., Wagner R. Mechanical and electrical properties of the solid sapropel // Environment. Technology. Resources: Proceedings of the 10th International Scientific and Practical Conference. Rezekne, Latvia, 2015, Vol. 1, pp. 139-146.

[7]     Breck D.W. Zeolite Molecular Sieves. Wiley: New York, 1974. 782 p.

[8]     Solovyev V.G., Ivanova M.S., Pan’kova S.V., Trifonov S.V., Veisman V.L. Preparation and physical properties of zeolite, zeolite-like single crystals and zeolite-based nanocomposite materials // Handbook of Zeolites: Structure, Properties and Applications / Editor T.W. Wong. New York: Nova Science Publishers, 2009. Chapter 5. P. 77–99.

[9]     Demuth R., Kober F. Grundlagen der Spektroskopie (Gebundene Ausgabe). Verlag: Diesterweg Salle Sauerländer, 1977, 159 Seiten.

[10]   P. M. Sivakumar, V.I. Kodolov,G.E. Zaikov, A. K. Haghi. Nanostructure, Nanosystems, and Nanostructured Materials: Theory, Production and Development. Apple Academic Press, Toronto, New Jersey, 2013, pp.580.

[11]  Stankevica K., Kļavins M. Sapropelis un tā izmantošanas iespējas (Sapropel and Its Application Possibilities)// Material Science and Applied Chemistry. 2013 / 29, p.109-126. (in Latvian)

[12]  Nikolaeva L. A., Latyshev V. G., Burenina O. N. Fuel Briquettes from Brown Coals of Yakutia. ISSN 0361-5219, Solid Fuel Chemistry, 2009, Vol. 43, No. 2, pp. 109–112.

[13]  Kovalenko G. A., Perminova L. V., Terent’eva T. G., Sapunova L. I., Lobanok A. G., Chuenko T. V., Rudina N. A., Chernyak E. I. Glucose Isomerase Activity in Suspensions of Arthrobacter nicotianae Cells and Adsorption Immobilization of the Microorganisms on Inorganic Carriers. Applied Biochemistry and Microbiology, 2008, Vol. 44, No. 2, pp. 174–181

[14]  Kovalenko G.A., Perminova L.V., Rudina N.A., Maksimova Yu.G., Maksimov A. Yu. Sapropel-based supports as novel macroporous carbon-mineral adsorbents for enzymatic active substances. Resource-Efficient Technologies, Vol. 2, 2016, pp. 159-167.

[15]  Smetanin V. I., Sogin A. V. Use of hydraulic excavation for cleaning and construction of water bodies. Power Technology and Engineering, Vol. 45, No. 4, November, 2011, pp. 254- 257.

[16]  Перк А. А. Использование сапропелей криолитозоны в качестве источника получения биологически активных веществ гуминового ряда// Перспективы фитобиотехнологии для улучшения качества жизни на Севере: материалы Междунар. конф. с элементами научной школы для молодежи, г. Якутск, Россия, 11-16 окт. 2010 г.- Якутск, 2010. - С. 154-158. (in Russian)

[17]  Ядрихинский В. Ф., Перк А. А., Егорова М. С. Применение препарата из сапропеля для лечения демодекоза собак// Актуальные вопросы ветеринарной медицины. - Новосибирск, 2003. - С. 71-72. (in Russian)

[18]  Павлова П. А., Перк А. А., Егорова М. С. Влияние биостимулятора из сапропеля на рост и развитие интродуцентов в условиях многолетней мерзлоты// Фундаментальные и прикладные проблемы ботаники в начале XXI века: материалы Всерос. конф. (Петрозаводск, 22-27 сент. 2008 г.). - Петрозаводск, 2008. - Ч. 6: Экологическая физиология и биохимия растений. Интродукция растений. - С. 291-294. (in Russian)

[19]  Juan C. Larrasoana, Andrew P. Roberts, Joseph S. Stoner, Carl Richter, Rolf Wehausen. A new proxy for bottom-water ventilation in the eastern Mediterranean based on diagenetically controlled magnetic properties of sapropel-bearing sediments. Palaeogeography, Palaeoclimatology, Palaeoecology. Vol. 190, 2003, pp. 221-242.

[20]  Petrunin G. I., Popov V. G., Soskov A. V. Thermal Properties of the Bottom Sediments of the Black Sea// Moscow University Physics Bulletin, 2008, Vol. 63, No. 1, pp. 61–66.

[21]  Adeeva L. N., Kovalenko T. A. Removal of Organic Substances and Metal Ions from Water Using a Carbon-Mineral Sapropel Sorbent. Russian Journal of Applied Chemistry, 2012, Vol. 85, No. 4, pp. 557−563.

[22]  Platonov V. V., Nikolaev D. S., Sakharovskii V. G., Proskuryakov V. A., Nikolaev S. G. High-Resolution 1H NMR Spectroscopy of Organic Matter of Carbonate-Chara Sapropel. Russian Journal of Applied Chemistry, Vol. 75, No. 12, 2002, pp. 2021-2026

[23]  Vysokogorskii V. E., Nozdrunova A. A., Plaksin G. V., Krivonos O. I., Mkrtchan O. Z., Petrosyan L. Yu. Antioxidant activity of liquid products of heat-treated sapropels. Pharmaceutical Chemistry Journal, Vol. 43, No. 4, 2009, pp. 191-194.

[24]  Giedrius Balčiūnas, Jadvyga Žvironaite, Sigitas Vejelis, Aleksandras Jagniatinskis,Sergejus Gaidučis. Ecological, thermal and acoustical insulating composite from hempshives and sapropel binder. Industrial Crops and Products, Vol. 91, 2016, pp. 286–294.

[25]  Arūnas Kremensas, Rūta Stapulioniene, Saulius Vaitkus, Agne Kairyte. Investigations on physical-mechanical properties of effective thermal insulation materials from fibrous hemp. Procedia Engineering, Vol. 172, 2017, pp. 586-594.

[26]  Tretjakova R., Grebeža J., Martinovs A. Research into biological characterictics of dried sapropel// Environment. Technology. Resources: proceedings of the 10th International Scientific and Practical Conference, Rezekne, 2015, Vol. 1, pp. 223-227.