FORECASTING MISSING DATA USING DIFFERENT METHODS FOR ROAD MAINTAINERS
Last modified: 04.04.2019
Abstract
Keywords
References
[1] Yozgatligil, C., Aslan, S., Iyigun, C. and Batmaz, I., 2013. Comparison of missing value imputation methods in time series: the case of Turkish meteorological data. Theoretical and applied climatology, 112(1-2), 143-167, https://doi.org/10.1007/s00704-012-0723-x
[2] Jeffrey, S.J., Carter, J.O., Moodie, K.B. and Beswick, A.R., 2001. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environmental Modelling & Software, 16(4), 309-330.
[3] Spadavecchia, L. and Williams, M., 2009. Can spatio-temporal geostatistical methods improve high resolution regionalization of meteorological variables?. Agricultural and Forest Meteorology, 149(6-7), 1105-1117.
[4] Dibike, Y.B. and Coulibaly, P., 2005. Hydrologic impact of climate change in the Saguenay watershed: comparison of downscaling methods and hydrologic models. Journal of hydrology, 307(1-4), 145-163, https://doi.org/10.1016/j.jhydrol.2004.10.012
[5] Taylor, J.W., De Menezes, L.M. and McSharry, P.E., 2006. A comparison of univariate methods for forecasting electricity demand up to a day ahead. International Journal of Forecasting, 22(1), 1-16, https://doi.org/10.1016/j.ijforecast.2005.06.006
[6] Subramanya, K., 2013. Engineering Hydrology, 4e. Tata McGraw-Hill Education.
[7] Dudani, S.A., 1976. The distance-weighted k-nearest-neighbor rule. IEEE Transactions on Systems, Man, and Cybernetics, (4), 325-327.
[8] Haykin, S.S., 2009. Neural networks and learning machines/Simon Haykin. New York: Prentice Hall.
[9] Giannone, D., Reichlin, L. and Small, D., 2008. Nowcasting: The real-time informational content of macroeconomic data. Journal of Monetary Economics, 55(4), 665-676.
[10] Bagheri, M., Nurmanova, V., Abedinia, O., Naderi, M.S., Naderi, M.S. and Ghadimi, N., 2018, June. A Novel Wind Power Forecasting Based Feature Selection and Hybrid Forecast Engine Bundled with Honey Bee Mating Optimization. In 2018 IEEE International Conference on Environment and Electrical Engineering (EEEIC/I&CPS Europe), 1-6.
[11] Sharp, J.J. and Sawden, P.G., 2013. BASIC hydrology. Elsevier.
[12] Cuypers, W., Van Gestel, N., Voet, A., Kruth, J.P., Mingneau, J. and Bleys, P., 2009. Optical measurement techniques for mobile and large-scale dimensional metrology. Optics and Lasers in Engineering, 47(3-4), 292-300, https://doi.org/10.1016/j.optlaseng.2008.03.013
[13] Fabbri, R., Costa, L.D.F., Torelli, J.C. and Bruno, O.M., 2008. 2D Euclidean distance transform algorithms: A comparative survey. ACM Computing Surveys (CSUR), 40(1), 2.
[14] Acuna, E. and Rodriguez, C., 2004. The treatment of missing values and its effect on classifier accuracy. In Classification, clustering, and data mining applications. Springer, Berlin, Heidelberg, 639-647, https://doi.org/10.1007/978-3-642-17103-1_60
[15] Barrientos, R.J., Gómez, J.I., Tenllado, C., Matias, M.P. and Marin, M., 2011, August. kNN query processing in metric spaces using GPUs. In European Conference on Parallel Processing. Springer, Berlin, Heidelberg, 380-392, https://doi.org/10.1007/978-3-642-23400-2_35
[16] Gylfason, T. and Hochreiter, E., 2011. Growing Together: Croatia and Latvia. Comparative Economic Studies, 53(2), 165-197.
[17] Zhang, Z., 2018. Artificial neural network. In Multivariate Time Series Analysis in Climate and Environmental Research, 1-35, https://doi.org/10.1007/978-3-319-67340-0_1
[18] Murata, N., Yoshizawa, S. and Amari, S.I., 1994. Network information criterion-determining the number of hidden units for an artificial neural network model. IEEE Transactions on Neural Networks, 5(6), 865-872, https://doi.org/10.1109/72.329683
[19] Park, T. and Lee, S., 2004. A Bayesian approach for estimating link travel time on urban arterial road network. In International Conference on Computational Science and Its Applications, 1017-1025, https://doi.org/10.1007/978-3-540-24707-4_114
[20] Chaudhari, P. and Soatto, S., 2018. Stochastic gradient descent performs variational inference, converges to limit cycles for deep networks. In 2018 Information Theory and Applications Workshop (ITA), 1-10