REDUCING RISK FACTORS IN THE WORKPLACE OF THE LASER SYSTEM OPERATOR

Pāvels Narica, Inese Martinsone


Last modified: 07.05.2019

Abstract

Laser processing of materials takes an increasing place in production processes. Improving the performance, improving the quality of processing is not a complete list of the positive aspects of the introduction of laser processing, but there are a number of points that need to be paid attention to during the operation of laser systems - these are issues related to safety. The following risk factors are specific to laser systems: firstly, the laser beam itself, effects on the organs of vision, direct thermal effects on the skin and tissues, secondly, harmful products resulting from the interaction of the laser beam and the material being processed. Aerosols, smoke and dust have different effects on the human body, especially on the respiratory system and the publication considers the risks associated with the release of harmful products during laser processing and the existing methods for reducing the concentration of harmful substances in the working area with specific examples.

Keywords


Clean air; Safety; Nano particles; Laser processing

References


[1]     Jakschik St., Blei St., Laser fumes in femtosecond laser processes – product, process and environment considerations, ULT AG, ILK Dresden, https://www.ult.de

[2]     https://www.tbh.eu/en/shortlinks/downloads.html

[3]     https://www.ult.de/images/content/download/02_geraeteserien/LAS_extraction_filtration_laser_fume_2016_en_web.pdf

[4]     https://www.lzh.de/de/publikationen/lasersicherheit

[5]     Laserbearbeitung,datenblatt/dbl_tb_laserbearbeitung_dbl_deutsch.pdf

[6]     Meissner St., Why Extraction and Filtrationn tehnology is important; ULT GmbH https://www.ult.de

[7]     https://www.tbh.eu/en/shortlinks/downloads.html

[8]     VDMA, Allgemeine Lufttechnik, Erfassen luftfremder Stoffe, www.luftreinhaltung.vdma.org

[9]     TRGS 900 Grenzwerte in der Luft am Arbeitsplatz – „Luftgrenzwerte

[10]   TRGS 901 Begründungen und Erläuterungen zu Grenzwerten in der Luft am Arbeitsplatz,

[11]   https://www.ult.de/images/content/download/03_absaugearme/ULT_extraction_arms_capturing_elements_flextractor_en.pdf

[12]   https://www.ult.de/images/content/download/02_geraeteserien/LAS_extraction_filtration_laser_fume_2016_en_web.pdf

[13]   Jenkins, N.T., Pierce, W.M.-G., Eagar, T.W. (2005) Journal of Welding, October, 156-163.

[14]   Lehnert, M., Pesch, B., Lotz, A., Pelzer, J., Kendzia, B., Gawrych, K., Heinze, E., Van Gelder, R., Punkenburg, E., Weiss, T., Mattenklott, M., Hahn, J.U., Möhlmann, C., Berges, M., Hartwig, A., Brüning, T.; Weldox Study Group. Ann Occup Hyg. (2012), 56(5), 557-567.

[15]   Pavlovska, Z., Martinsone, Z., Vanadzins, I., Martinsone, I., Seile, A., Sudmalis, P.,2016. Occupational exposure parameters for characterization of nanoparticu-late matter toxicity: metal versus wood processing. Process Saf. Environ. Prot.102, 230–237.

[16]   Peixe, T.S., de Souza Nascimento, E., Schofield, K.L., Arcurid, A.S.A., Bulcão, R.P., 2015. Nanotoxicology and Exposure in the Occupational Setting. Occup. Dis. Environ. Med. 3, 35–48

[17]   O’Shaughnessy, P.T., 2013. Occupational Health risk to nanoparticulate exposure. Environ. Sci. Process. Impacts 15, 49–62.